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THE SYNTHESIS OF sn-2 PALMITATE AS
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ABSTRACT

Human milk fat substitute (HMFS) is structured lipids with characteristics similar to human milk fat

used in infant formulas. HMFS is designed to contain 60%-70% palmitic acid at the sn-2 position and

unsaturated fatty acids at the sn-1,3 positions in the triacylglycerol structure. HMFS is synthesised by

enzymatic interesterification of vegetable oils or animal fats. Generally, the type of HMFS synthesised is sn-2

palmitate, with the main triacylglycerol being 1,3-dioleoyl-2-palmitoylglycerol (OPO). Palm oil fractions

are used as raw material to synthesise sn-2 palmitate because it contains high palmitic acid. This article

reviews the synthesis of sn-2 palmitate based on palm oil fractions via enzymatic interesterification. It gives

a detailed description of the potential of palm oil fractions as substrates, lipases as biocatalysts, methods and

reactors synthesis, and fractionation to increase the triacylglycerol of OPO. The information presented in

this review can be used to develop future strategies for the synthesis of palm-based HMFS.
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INTRODUCTION

Human milk fat contains 32.0%-52.0% saturated
fatty acid, 30.0%-50.0% monounsaturated fatty
acid, and 2.5%-13.8% polyunsaturated fatty acid
(Monaco et al.,, 2016). The primary fatty acids
contained in human milk fat are 30.0%-35.0% oleic
acid, 20.0%-30.0% palmitic acid, 7.0%-14.0% linoleic
acid, and 5.7%-8.0% stearic acid. Besides these fatty
acids, the human milk fat also contains long-chain
polyunsaturated fatty acids (LCPUFA) and they
include docosahexaenoic acid, eicosapentaenoic
acid, and arachidonic acid contained in with a
concentration of less than 1.0% (Ferreira-Dias and
Teceldo, 2014; Wei et al., 2019). In human milk fat,
about 60.0%-70.0% of palmitic acid is distributed
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at the sn-2 position and unsaturated fatty acids
(oleic acid, linoleic acid, docosahexaenoic acid,
eicosapentaenoic acid, and arachidonic acid) at the
sn-1,3 positions (He et al., 2017; Wei et al. 2019).

Human milk fat substitutes (HMFSs) are
structured lipids with the distribution of fatty acids
similar to human milk fat (Sahin et al., 2005a; 2005b),
commonly used as fat in infant formulas. HMFS
has a similar function as human milk fat, increasing
the permeation of calcium and fat, making the stool
softer, and reducing obstipation (Zou et al., 2017).
HMESs are classified into four types, which include
sn-2 palmitate (B-palmitate)) LCPUFA, medium-
chain fatty acid (MCFA), and milk fat globule
membrane supplements. Sn-2 palmitate is the most
common type of HMFS synthesised and it contains
1,3-dioleoyl-2-palmitoylglycerol (OPO), one of the
primary triacylglycerols in human milk fat (Wei et
al., 2019).

In general, sn-2 palmitate is synthesised using
oils and fats containing palmitic acid at the sn-2
position including, tripalmitin (Ilyasoglu et al., 2011;



THE SYNTHESIS OF sn-2 PALMITATE AS HUMAN MILK FAT SUBSTITUTE FROM PALM OIL FRACTIONS BY ENZYMATIC INTERESTERIFICATION - AREVIEW

2013; Liu et al., 2015; 2017; Teceldo et al., 2010; Wang
et al., 2016; Yiiksel and Yesilgubuk, 2012; Zheng et
al., 2017), lard ( Qin et al., 2014; Wang et al., 2010;
Yang et al., 2003; Zhang et al., 2016), catfish oil (Zou
et al., 2016a; 2016b), oil from Nannochloropsis oculata
(He et al., 2017), butterfat oil (Renne et al., 2005) and
palm oil fractions (Ghosh et al., 2016; Karabulut et
al., 2007; Nagachinta and Akoh, 2013). Also, palmitic
acid (Robles et al., 2011; Turan et al., 2013) and ethyl
palmitate (Turan et al., 2013) are used as palmitic acyl
donors to enhance palmitic acid at the sn-2 position
of oil containing high unsaturated fatty acids.

Palm oil fractions are the best substrates for
HMEFS synthesis among the vegetable oils synthesis
(Mat Dian et al., 2017). However, palm oil fractions
contain high palmitic acid at the sn-1,3 positions
(Lasekan et al., 2017). The presence of palm oil
fractions in infant formula would contribute to the
physiological function of the body such as reduction
of intestinal permeation of fat, palmitic acid, calcium
and lower bone mass (Chen et al., 2019; Koo et al.,
2006). Thus, palm oil fractions need to be modified
so that more palmitic acid will be at the sn-2 position,
hence resembling human milk fat. This article
aims to scientifically update the usage of palm oil
fractions for sn-2 palmitate synthesis as HMFS. This
article will cover the potential of palm oil fractions
as substrates, lipases as biocatalysts, reactors and
methods synthesis, and fractionation to increase

OPO content in HMFS. Prospects of palm-based sn-2
palmitate synthesis were also discussed.

PALM OIL FRACTIONS AS SUBSTRATES FOR
sn-2 PALMITATE SYNTHESIS

Palm oil fractions can be used as a substrate for sn-2
palmitate synthesis because of their high content
of palmitic acid and oleic acid (Table 1) and can act
as acyl donors for both acids. Apart from palm oil
fractions, palm kernel oil is also utilised as a source
of MCFA (especially lauric acid) for the HMFS
synthesis (Hasibuan and Jjah, 2016; Karabulut et al.,
2007; Zou et al., 2011; 2012b).

The palm oil fractions contain tripalmitin,
a palmitic acid-containing triacylglycerol at the
sn-2 position. Palm stearin is a solid palm fraction
that contains high palmitic acid and tripalmitin
compared to palm oil and palm olein (Table 2). Hence
palm stearin is often used as a substrate for sn-2
palmitate synthesis (Wei et al., 2019). In the palm oil
industry, palm stearin can be fractionated through
dry fractionation to produce soft palm stearin and
hard palm stearin (Hasibuan and Siahaan, 2013).
Hard palm stearin has palmitic acid higher than
palm stearin and soft palm stearin. Hard palm
stearin contains the main triacylglycerol, namely
tripalmitin of 51.0% (Ibrahim et al., 2006). Although
palm stearin is rich in tripalmitin, it also contains

TABLE 1. FATTY ACIDS OF PALM OIL FRACTIONS

Fatty acids (%) Palm oil* Palm olein®*  Palm stearin® Soft palm stearin®*  Hard palm stearin**  Palm kernel oil*
C6:0 ND ND ND ND ND ND-0.8
C8:0 ND ND ND ND ND 2.4-6.2
C10:0 ND ND ND ND ND 2.6-5.0
C12:0 ND-0.5 0.1-0.5 0.1-0.5 0.01-0.25 0.14-0.32 45.0-55.0
C14:0 0.5-2.0 0.5-1.5 1.0-2.0 0.97-1.21 1.06-1.36 14.0-18.0
C16:0 39.3-47.5 38.0-43.5 48.0-74.0 50.94-54.84 76.36-81.04 6.5-10.0
Cle6:1 ND-0.6 ND-0.6 ND-0.2 ND-0.76 ND-0.09 ND-0.2
C17:0 ND-0.2 ND-0.2 ND-0.2 ND ND ND
C17:1 ND ND-0.1 ND-0.1 ND ND ND
C18:0 3.5-6.0 3.5-5.0 3.9-6.0 4.44-5.46 3.61-4.87 1.0-3.0
C18:1 36.0-44.0 39.8-46.0 15.5-36.0 30.82-34.06 11.62-13.66 12.0-19.0
C18:2 9.0-12.0 10.0-13.5 3.0-10.0 6.91-8.71 1.95-3.33 1.0-3.5
C18:3 ND-0.5 ND-0.6 ND-0.5 ND-0.21 ND-0.09 ND-0.2
C20:0 ND-1.0 ND-0.6 ND-1.0 ND-0.18 ND-0.12 ND-0.2
C20:1 ND-0.4 ND-0.4 ND-0.4 ND-0.06 ND-0.09 ND-0.2
C20:2 ND ND ND ND ND ND
C22:0 ND-0.2 ND-0.2 ND-0.2 ND ND ND
Todine value (IV) 50-56 >56 <48 39.90-43.14 14.77-19.33 14.1-21.0

Note: ND - not detected.

Source: *Codex Alimentarius (2001), **Hasibuan and Siahaan (2013).
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triacylglycerol with oleic acid at the sn-2 position
(Table 2). When triacylglycerol containing oleic acid
at the sn-2 position is acidolysed with oleic acid
using a specific lipase of sn-1,3 will produce triolein
(Wang et al., 2020), which is not a sn-2 palmitate
product. Table 3 shows that palm stearin has palmitic
acid content at the sn-2 position ranging from
23.0%-70.1%. Thus, the palmitic acid content at the
sn-2 position in palm stearin needs to be increased
to produce a good substrate for HMFS synthesis
(Hasibuan et al., 2021b).

Technologies for improving the positioning of
palmitic acid at the sn-2 position of palm stearin are
solvent fractionation (Ghosh et al., 2016; Lee et al.,
2010; Wang et al., 2019; Zou et al., 2012a), enzymatic
interesterification (Jiménez et al., 2010a; 2010b) or
chemical interesterification (Zou et al., 2011; Zou

et al., 2012b). Palm stearin is fractionated using
acetone as a solvent to produce a tripalmitin-rich
triacylglycerol (92.0%) (Lee et al., 2010) and palmitic
acid (88.57%-92.30%) (Ghosh et al., 2016; Wang et al.,
2019; Zou et al., 2012a). In general, the palm stearin
solvent fractionation process condition is carried
out at an acetone ratio of 5-9 and a fractionation
temperature of 20°C-40°C for 3-24 hr.

Enzymatic interesterification between palm
stearin (60.0% palmitic acid and 23.0% palmitic
acid at the sn-2 position) with palmitic acid
using Novozyme 435 produces a product with
68.0%-75.0% palmitic acid at the sn-2 position
(Jiménez et al., 2010a; 2010b). Meanwhile, chemical
interesterification of palm stearin (41.7% palmitic
acid at the sn-2 position) resulted in a product with
58.0% palmitic acid at the sn-2 position (Zou et al.,

TABLE 2. TRIACYLGLYCEROLS COMPOSITION OF PALM OIL FRACTIONS

Triacylglycerols (%) Palm oil* Palm olein* Palm stearin®

Soft palm stearin** Hard palm stearin**

Palm kernel oil*

CCLa

CLala

LalLalLa

LaLaM

LaLaO

LaMM

PLL

MMM 0.4 0.6 0.2

LaLaP

LaMO

MPL 2.4 3.7 1.0

LaMP

LaOO

LaPO

LaPP+MMO

OOL 0.7 0.8 0.1

MMP 1.8 2.6 0.8

MOO

POL 10.1 15.8 53

PPL 9.8 11.2 7.8

MPP 0.6 ND 2.3

000 4.1 5.6 1.8

POO 242 36.3 12.0
PPO 31.1 17.1 29.8
PPP 59 0.1 29.2
SOO 2.3 3.6 0.8

PSO 5.1 2.5 3.8

PPS 0.9 ND 52

SSO 0.5 ND ND

6.8
9.9
21.2
17.0
53
8.8
1.0 ND
ND ND
1.2
4.6
0.1 ND
4.6
3.8
43
0.8 ND
ND ND 0.7
2.0
6.9 0.9
8.1 3.8 0.6
ND ND
4.1 45 14
18.0 3.0 1.9
32.0 26.4 1.1
20.6 51.0 0.1
ND ND 0.4
4.9 2.9 0.4
3.5 7.4
ND ND

Note: ND - not detected; L - lauric acid; M-myristic acid; O - oleic acid; P - palmitic acid; S - stearic acid.

Source: *Tan and Man (2002); ** Ibrahim et al. (2006).
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2012b). In other studies, Zou et al. (2011) reported
chemical interesterification of palm stearin (56.8%
palmitic acid at the sn-2 position) and manufactured
a product with 69.8% palmitic acid at the sn-2
position.

Palm oil fractions can also produce palmitic
acid and oleic acid as palmitic and oleic acyl
donors for the sn-2 palmitate synthesis. Both are
manufactured by hydrolysis of palm oil fractions,
then separated from other fatty acids (Esteban et
al., 2011; Jimenez et al., 2010a). Besides palmitic
acid, ethyl palmitate can also be used as a palmitic
acyl donor (Pina-Rodriguez and Akoh, 2009; Turan
et al., 2013), produced through the esterification of
palmitic acid with ethanol. Likewise, ethyl oleate
is an oleic acyl donor (Lee et al., 2010). Palmitic
acyl donors are used as a substrate for improving
palmitic acid at the sn-2 position of oil and fat.
Meanwhile, acyl oleic donors are used to increase
sn-1,3 oleic acid of oils and fats that contain high
tripalmitin.

TABLE 3. FATTY ACIDS AT THE sn-2 POSITION OF PALM

STEARIN

Fatty acids (%) Total sn-2
C12:0 ND-0.9 ND-0.3
C14:0 13-17 ND-1.0
C16:0 68.8-70.1 23.0-70.1
C18:0 48-52 0.7-2.9
C18:1 18.7-29.0 30.9-65.2
C18:2 39-75 8.3-12.6
C18:3 ND-0.3 ND -0.1

Source: Jimenez et al. (2010a, 2010b); Zou et al. (2011; 2012b).

LIPASE FOR PALM-BASED sn-2 PALMITATE
SYNTHESIS: TYPES AND SOURCES

Lipase (triacylglycerol hydrolase, EC 3.1.1.3) is a
biocatalyst that naturally acts on carboxylate ester
bonds to catalyse the hydrolysis of triacylglycerol
(Aradjo ef al., 2016). This substrate is insoluble
in water, and the reaction usually occurs at the
organic-water interface, where lipase works best
(Adlercreutz, 2013). In non-aqueous media, lipase
catalyses esterification, acidolysis, alcoholysis, and
interesterification (Aradjo et al., 2016; Rodrigues and
Fernandez-Lafuente, 2010; Speranza and Macedo,
2012). Lipase has serine-histidine-aspartate catalytic
active sites, which is responsible for its catalytic
activity (Fernandez-Lafuente, 2010; Ortiz et al., 2019;
Rodrigues and Fernandez-Lafuente, 2010). Lipase
shows variable stability against the extreme pH
conditions, the appearance of organic solvents, and
ionic liquids (Kapoor and Gupta, 2012).

Lipase is an excellent biocatalyst for synthesising
structured lipids, and triacylglycerol with fatty acids
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at a specific position (Iwasaki and Yamane, 2000).
HMEFS is a structured lipid produced using various
types of enzymes, substrates, and acyl donors
(Soumanou et al., 2013). The lipases commonly used
for HMFS synthesis are Novozyme 435, Lipozyme
RM IM, and Lipozyme TL IM (Table 4).

Lipozyme TL IM is obtained from Thermomyces
lanuginose and is immobilised using silica. Lipozyme
TLIM can maintain activity at 55°C-60°C (Fernandez-
Lafuente, 2010) and shows positional specificity at
the sn-1,3 (Soumanou et al., 2013). Lipozyme RM IM
is derived from Rhizomucor miehei and is immobilised
using Duolite ES 562. Lipozyme RM IM is highly
specific in the choice of substrate, stereospecific,
regioselective, active and stable (Rodrigues and
Fernandes-Lafuente, 2010; Zouet al.,2014). Lipozyme
RM IM also shows positional specificity at the sn-1,3
(Soumanou et al., 2013). Novozyme 435 is generated
from Candida antarctica lipase B and is immobilised
using acrylic resin. Novozyme 435 is one of the
most stable commercial lipases commonly used for
various reactions (Ortiz et al., 2019). Novozyme 435
can be used at 60°C-70°C (Soumanou et al., 2013).
When the substrate is triacylglycerol, Novozyme
435 does not show positional specificity (Jiménez et
al., 2010a; 2010b; Soumanou et al., 2013).

METHODS FOR PALM-BASED snr-2 PALMITATE
SYNTHESIS

Interesterification is an accepted oil and fat
modification technique by redistributing the fatty
acid groups between and within the triacylglycerol.
After the interesterification of the substrate, the
product has a distinct chemical composition and
improved physical characteristics (Pacheco et al.,
2015). Enzymatic interesterification can be carried
out non-specifically and specifically (Silva et al.,
2012). Non-specific enzymatic interesterification
is a random process similar to chemical
interesterification. Meanwhile, specific enzymatic
interesterification is an acyl exchange process to a
particular position, mainly at the sn-1,3 position
using regioselective lipase (Gibon et al., 2009).

In general, sn-2 palmitate synthesis (especially
OPO) is fabricated by a one-step reaction including
transesterification or acidolysis and two-step
reactions such as alcoholysis and esterification or
two-step acidolysis (Hasibuan et al., 2021) (Figure
1). Apart from oleic acid (monounsaturated fatty
acid, MUFA), fatty acids that are incorporated at
the sn-1,3 position of sn-2 palmitate are fatty acids
of MCFA (Karouw ef al., 2012), LCPUFA (Ghosh et
al., 2016; Nagachinta and Akoh, 2012; 2013), MUFA
and LCPUFA (Wang et al., 2019; Zou et al., 2012) or
MCFA, MUFA and LCPUFA (Hasibuan and Ijah,
2016; Karabulut et al., 2007; Zou et al., 2011; 2012b).
Process conditions for palm-based sn-2 palmitate
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Acidolysis
P (6]
sn-1,3
specific lipase
p + O > p + P
P (6]
Transesterification
P (0] (0] P (0] (0]
sn-1,3
specific lipase
P+ (0] > P+ o + P + (0]
P (0] (0] P P P
Alcoholysis and Esterification
First-step: Alcoholysis
P OH
sn-1,3
specific lipase
P + ROH > P + ROP
P OH
Second-step: Alcoholysis
OH (6]
sn-1,3
specific lipase
P + O e =] + H,0
OH (6]

Note: P - palmitic, O - oleic, ROH - alcohol, ROP - palmitic acid alkyl ester.

Figure 1. Mechanism of reaction for sn-2 palmitate synthesis using sn-1,3 specific lipase (especially OPO).

synthesis are presented in Table 4. Sn-2 palmitate
synthesis can be performed in a solvent or solvent-
free system. However, the solvent-free system is
advisable for HMFS synthesis in terms of food
safety and low production costs (Ferreira-Dias
et al., 2019).

Transesterification. Transesterification is a reaction
between 1) triacylglycerol and triacylglycerol
or 2) triacylglycerol and esterified fatty acids
(Hassim et al., 2018; Wei et al., 2019). In the first
type of reaction, Karabulut et al. (2007) conducted
the interesterification of a mixture of palm oil,
palm kernel oil, olive oil, sunflower oil, and
marine oil using Lipozyme TL IM. The product
contained 23.0% palmitic acid and 41.5% palmitic
acid at the sn-2 position. Ghosh et al. (2016)
reported transesterification between palm stearin
fractionated with PUFA-rich fish oil with Lipozyme
TL IM produced HMFS with 75.98% palmitic acid
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at the sn-2 position, 0.27% arachidonic acid, 3.43%
eicosapentaenoic acid, and 4.25% docosahexaenoic
acid. In the synthesis using the second reaction,
Lee et al. (2010) reported transesterification of palm
stearin fractions and ethyl oleate using Lipozyme
TL IM. The product contained 31.43% OPO, 80.6%
palmitic acid at the sn-2 position, and 64.9% oleic
acid at the sn-1,3 position.

Acidolysis. Acidolysis is a reaction of triacylglycerol
and fatty acid (Hassim et al., 2018; Wei et al., 2019).
Acidolysis between triacylglycerol contains high
palmitic acid at the sn-2 position from palm stearin
with MUFA, MCFA, and LCPUFA using Lipozyme
RM IM has been reported by Zou et al. (2012a; 2012b)
and Wang et al. (2019). Meanwhile, Nagachinta and
Akoh (2012) used Novozyme 435 for acidolysis
of palm olein with docosahexaenoic acid, and
arachidonic acid to produce triacylglycerol with
25.25% (w/w) docosahexaenoic acid+arachidonic
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acid incorporation and 17.20% (w/w)
docosahexaenoic acid+arachidonic acid at the sn-2
position. Nagachinta and Akoh (2013) also reported
Novozyme 435 for acidolysis between palm olein
with palmitic acid, docosahexaenoic acid, and
gamma linoleic acid to produce triacylglycerol
containing palmitic acid at the sn-2 position,
docosahexaenoic acid, and gamma linoleic acid
35.11%, 3.75% and 5.03%, respectively.

Two-step process. The two-step process can
be carried out by alcoholysis of triacylglycerol
using a specific lipase sn-1,3 to produce sn-2
monoacylglycerol and then sn-2 monoacylglycerol
esterified with fatty acid (Wei et al., 2019) or esterified
fatty acid (Karouw et al., 2012). This method produces
high yield and purity (Soumanou et al., 2013). The
two-step process can also be conducted using two-
step acidolysis, as reported by Esteban ef al. (2011).
First, palm stearin is acidolysed with palmitic acid
using Novozyme 435 to produce triacylglycerol
containing high palmitic acid at the sn-2 position.
Second, triacylglycerol is acidolysed with oleic acid
using lipase DF from Rhizopus oryzae. The product
had 67.80% palmitic acid at the sn-2 position and
57.20% distributed at the sn-2 position.

REACTORS FOR PALM-BASED sn-2 PALMITATE
SYNTHESIS

The challenge in structured lipid synthesis by
enzymatic interesterification is that production costs
arerelatively high, soitis necessary to use continuous
processes and cost-effective catalysts (Bourlieu et
al., 2009; Jala and Kumar, 2018). The selection of
reactors is essential to fabricate high product yields.
A batch and continuous reactor are used in the
enzymatic interesterification for sn-2 palmitate. The
batch reactor is usually suitable for operation at a
laboratory scale, whereas the continuous system is
very appropriate for an industrial scale. The optimal
reaction conditions for palm-based sn-2 palmitate
synthesis in a batch reactor are enzyme load of 8.0%-
10.0% (w/w of the total substrate), temperature
40°C-60°C, and reaction time 3-24 hr.

Continuous enzymatic interesterification is an
economical technology for large-scale production
because of its minimal costs, ease of operation, and
being able to control the fatty acid distribution due
to the selectivity and regiospecific of lipases (Silva
et al., 2012). The continuous system commonly used
in enzymatic interesterification is a packed bed
reactor (Soumanou et al., 2013; Zou et al., 2012b).
The advantages of a packed bed reactor over batch
reactors are due to relatively high enzyme stability,
ease of operation on large scales, high reaction rates,
and mass transfer, thereby reducing the occurrence
of acyl migration (Sen et al., 2016; Zou et al., 2012Db).
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A packed bed reactor is best applied continuously
on an industrial scale to minimise the labour and
costs of the processes (Nielsen et al., 2006). Zou et
al. (2012b) used a packed bed reactor in acidolysis
between interesterified palm stearin with a mixture
of stearic acid, myristic acid and fatty acids from
rapeseed oil, sunflower oil, and palm kernel oil. The
optimum conditions obtained using the response
surface methodology approach were a substrate
ratio of 9.5 mol/mol with a residence time of 2.7 hr
at 58°C. The final product contained 28.8% palmitic
acid and 53.2% palmitic acid at the sn-2 position.

ENHANCING OF sn-2 PALMITATE-RICH HMFS
THROUGH FRACTIONATION

Karabulut et al. (2007) reported on the enzymatic
interesterification of a mixture of palm oil, palm
kernel oil, olive oil, sunflower oil, and marine oil
was not optimum enough to produce a product with
high palmitic acid at the sn-2 position. Fractionation
can be applied in HMFS products obtained
through enzymatic interesterification to increase
triacylglycerol containing high palmitic acid at the
sn-2 position (Hasibuan et al., 2021c).

Fractionation of the acidolysis product between
butterfat and a mixture of fatty acids from rapeseed
oil and soybean oil using acetone as solvent at a ratio
of 2.5, temperature of 0°C for 3 hr was reported by
Serensen et al. (2010). The product contained 56.12%
palmitic acid at the sn-2 position. This value was
higher than the product obtained from butterfat’s
acidolysis fractionated first (47.26%). In another
study, Lee et al. (2015) reported the OPO content
enhanced from 25.2% to 53.3% after fractionation
at 22°C for 12 hr of the interesterified palm oil and
camellia oil.

FUTURE OUTLOOK: CHALLENGES AND
OPPORTUNITIES IN sn-2 PALMITATE
SYNTHESIS

Betapol is commercial sn-2 palmitate developed by
Loders Croklaan in 1995 through acidolysis of the
tripalmitin-rich palm stearin with oleic acid from
high oleic sunflower oil using Lipozyme RM IM
as a biocatalyst (Wei et al., 2020). Palm oil fractions
will continue to be developed as a substrate for
sn-2 palmitate production because of the following
advantages; high palmitic acid content, abundant
availability, and low price (Hasibuan, 2021a). In
addition, palm oil is one vegetable oil that does
not contain cholesterol (Gesteiro et al., 2019). Palm
stearin as a substrate in the sn-2 palmitate synthesis
is very interesting. However, the melting point of
palm stearin is relatively high, so in the enzymatic
process, it is necessary to add organic solvents (such
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as hexane) or be carried out at a sufficiently high
reaction temperature (Jimenez et al., 2010a; 2010b).

The addition of solvents can lead to an increase
in production costs and potential toxicity. In
addition, the use of solvents is not recommended
in terms of food safety (Ferreira-Dias and Teceldo,
2014). Thus, the production of HMFS in solvent-
free systems is preferred in terms of food safety,
cost, environmental friendly and ease of product
purification (Ferreira-Dias and Teceldo, 2014; Teceldo
et al., 2019). However, the reaction in a solvent-free
system needs to be carried out at a high temperature
(Hasibuan, 2021a), which affects the lipase stability.
For this reason, the reaction in a solvent-free system
can use immobilised enzymes, which have higher
stability than the original free suspended enzymes.
Enzyme immobilisation can prevent denaturation
and leakage of enzymes so that the number of
batches or the duration of synthesis can be increased
(Adlercreutz, 2013).

Several studies reported that the wuse of
commercial immobilised lipases such as lipases of
Novozyme 435, Lipozyme TL IM, and Lipozyme
RM IM in the synthesis of HMFS show good
activity and stability (Hasibuan, 2021a). Jimenez
et al. (2010a) reported that lipase Alcaligenes sp.
immobilised on diatomaceous earth remained
stable for at least 11 times using acidolysis between
palm stearin and palmitic acid at a mole ratio of 1:3,
reaction temperature of 65°C and reaction time of
24 hr. In addition, Esteban et al. (2011) reported that
the lipase Rhizopus oryzae immobilised on Accurel
MP1000 remained stable for at least ten times usage
in acidolysis between palm stearin high in palmitic
acid at the sn-2 position and oleic acid at a mole ratio
of 1:6, 50°C for 19 hr. Exploring new biocatalysts
with high catalytic activity and operational stability
through isolation and genetic engineering is of
interest for future research (Wei et al., 2020). Efficient
and stable biocatalysts will reduce operating costs
(Tecelado et al., 2019).

In contrast to lard, catfish oil, and butterfat
oil, palm stearin has high sn-1,3 palmitic acid,
requiring a high ratio of fatty acyl donors. The use
of a high acyl donor ratio is unattractive because of
the difficulty of the separation process (Zou et al.,
2016b), so the cost for separation after processing
is high (Zhang et al., 2016). Thus, it is necessary to
develop specific lipases to synthesise palm-based
HMFS using palm stearin with low acyl donor ratios.
Faustino et al. (2016) reported that the acidolysis
between tripalmitin and fatty acids from camelina
oil at a low fatty acid mole ratio of 1:1.2 using lipase
Rhizopus oryzae immobilised on Lewatit VPOC 1600
at a reaction temperature of 65°C could use up
tripalmitin at 62.7% w/w.

Specialised treatments such as crystallisation
fractionation are important to enrich palmitic acid
at the sn-2 position. Acyl donors (MUFA, MCFA,
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and PUFA) will continue to be explored to produce
palm-based HMFS resembling human milk fat
(Hasibuan et al., 2021c). In addition, palm-based
HMEFS formulation for infant formula needs to be
developed according to the baby’s needs (age and
condition) and regulations related to infant formula.
Commercial formula is divided into three stages
depending on the age of the baby, namely infant
formula (0-6 months, stage 1), follow-up formula (6-
12 months, stage 2), growth formula (12-36 months,
stage 3). The rules fthe formulas of the various stages
may differ (Wei et al. (2019).

The relevant regulations enacted by several
authorities to regulate infant formula include the
Codex Alimentarius Commission (CAC), the US
Food and Drug Administration (FDA), the European
Commission (EC), and the National Health
Commission of the People’s Republic of China
(NHC). CAC, EC and NHC require that a-linolenic
acid is required to be more than 50 mg/100 kcal, the
amount of lauric acid and myristic acid should not
exceed 20.0% of the total fatty acids, trans-fatty acids
should be less than 3.0% of the total fatty acids, erucic
acid should be less than 1.0% of total fatty acids and
eicosapentaenoic acid levels should be no more than
docosahexaenoic acid levels. Docosahexaenoic acid
is recommended as the essential constituent (4.8-
12 mg/100 kJ). The EC and NHC recommend that
docosahexaenoic acid do not exceed 2.0% and 0.5%
of total fatty acids, respectively, and arachidonic acid
levels should not exceed 1.0%. The EC recommended
that the w-3 and w-6 LCPUFAs be less than 1.0% and
2.0% of the total fatty acids, while the CAC allowed
the addition of LCPUFAs, respectively. CAC
requires no commercial hydrogenated fats and oils
to be used as raw materials. The EC also states that
sesame seed oil and cottonseed oil are not allowed
in infant formula because of potential allergens (Wei
et al., 2019).

CONCLUSION

Primarily, palm stearin is used as a substrate for sn-2
palmitate synthesis for HMFS. Triacylglycerol rich
in palmitic acid at the sn-2 position of palm stearin
needs to be increased to be an excellent substrate for
the production of HMFS with palmitic acids at the
sn-2 position >60%. The selection of enzyme types
and loading, substrate types, synthesis methods,
and reactor configuration is essential to improve the
efficiency of HMFS synthesis. Generally, the optimal
reaction conditions for palm-based sn-2 palmitate
synthesis in a batch reactor are enzyme load of
8%-10% (w/w of the total substrate), temperature
of 40°C-60°C, and reaction time of 3-24 hr. The
OPO content in palm-based HMFS produced by
enzymatic interesterification can be increased using
fractionation. The challenge in HMFS synthesis is
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the high production cost. In addition, the resulting
product must resemble HMF, hence the complete set
of acyl donors from fatty acids such as MUFA, MCFA
and PUFA must be present in HMF. The reduction in
the production cost of HMFS can be accomplished
through the exploration of acyl donors and novel
lipase enzymes with high catalytic activity and
stability at a low cost.
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